Thixomolded Magnesium Injection Molding Design Guide
Design to the benefits of Thixomolding

1. Part Design Rules and Approach similar to Injection Molded Plastic
 - More Aggressive on Walls, Reinforcements, etc.

2. Tooling Features and Capabilities similar to Plastic Mold Tooling
 - Mold runs at 400 - 500 F

3. Mechanical Properties 20X unfilled Thermoplastics

4. Designs inherently EMI Shielding - no plating or painting required

5. Parts inherently Thermally Conductive

6. Corrosion Issues:
 a) General Corrosion better than Al & Steel
 b) Galvanic Corrosion - follow Aluminum Rules

7. Fastening/Joining:
 Snap Fits, Thread Forming Screws, Welding all applicable

8. Variety of Cosmetic Treatments:
 Powder Coat, Paint, Plating

9. Complete Recyclability regardless of cosmetic treatment
Areas to consider in design

Nominal Wall Thickness:
- Gradual transition: 3:1 Rule
- Core-out thick sections
- Remove sharp corners
- Thick to Thin
- Limitations

Draft Angle:
- Facilitate Part Ejection
- Suggested: 0.5° - 3.0°

Processing Concerns:
- Flow Length

Machinability vs. Other Metals

Corrosion:
- General
- Galvanic

Reinforcement Structures:
- Ribs
- Gussets
- Bosses

Assembly Methods:
- Snap-Fit
- Interference Fits
- Fasteners
- Joint Designs
Wall Thickness

• Nominal Part Thickness
 Minimum: 0.018” (0.5 mm)
 Maximum: 0.120” (3.0 mm)

• Flow length to Wall Thickness Ratio : L/D
 Thixomolded Magnesium Designs > 150:1
 Thixomolded Magnesium Spiral Flow Tests > 400:1
 Conventional Plastic < 100:1
Wall Thickness

Poor Design
Heavy Walls

Better Design
Shape would require slides

Best Design
Uniform walls No slides

Poor Design
Heavy section promotes internal shrinkage

Good Design
Coring eliminates heavy section
Nominal Wall Design

- Radius Transitions from Thin to Thick
- Core Thick Sections where Possible
Wall Transitions

Initial

Better

Best

Gradual Radiused Transitions are best
Corner Design

INITIAL

Sharp Corner

IMPROVED

R = 0.5 T

R = 1.5 T

Radius Corners / Maintain Nominal Wall
Design for uniform nominal wall: maximum stiffness with minimal shrinkage.
Draft Angle & Part Removal

1) Suggested Draft Angle 1°
 Equivalent to 0.017 in/in/deg

2) Minimum Draft Angle = 0.5°

3) No draft in some areas.
Reinforcement Design

- Ribs
- Bosses
- Gussets
Reinforcement Design Rules

Thixomolded Magnesium Rules

- $t \leq 1.2t_{\text{wall}}$
- $h \leq 5t_{\text{wall}}$
- $r \geq 0.6\text{mm}$
- $\Theta \geq 0.5^\circ$
- OD $\approx 2\text{ID}$

Plastic Rules

- $t \leq 0.6t_{\text{wall}}$
- $h \leq 4t_{\text{wall}}$
- $r \geq 0.375\text{mm}$
- $\Theta \geq 0.25^\circ$
- OD $\approx 2\text{ID}$

More Aggressive than Plastic
Rib Design Basics

$R \geq 0.015''$ (The Larger the Better)

$t < 1.25T$

$\frac{1}{4}$ to $\frac{1}{2}$ degree draft

INTERSECTIONS:

Maintain Nominal Wall at Intersections

Radius Corners
Boss Design

Standing Features:
- add strength
- facilitate alignment
- during assembly
- attachment

Dimensions:
- \(R = 0.25 \ T \)
- \(2D \)
- \(H = 2 \text{ to } 8T \)
- \(W \leq 0.8 \ T \)
- \(t = 0.4 \text{ to } 0.6T \)
Gussets

- Points of attachment
- Support Sections
- Contact with other parts / sections
- Follow thickness and height rules for Rib Design
Assembly: Snap Fit Designs

1. Wall
2. Radius Corners
3. Insertion Angle

Strain \(= \frac{3\, y t}{2\, I^2} \)

Cantilever Force \(= \frac{y B t^3}{4\, I^3} \frac{E_s}{4\, I^3} \)

Insertion Force \(= \frac{F\, \mu + \tan \phi}{1 - \mu \tan \phi} \)
Assembly: Fasteners

- Self forming screw work best
 - Do not exceed the ductility limits of Magnesium.
 - Eliminate possibility of thread damage
 - Eliminate excess debris and chips
- Use Zinc or Chromate plated screws to minimize Galvanic corrosion.
V-Groove Stiffeners

Efficient stiffeners “Corrugation Effect”

Little additional material

No additional cooling time

Reduce Expansion and Compression
1. As-Molded
 - versus as-cast. Smoother, less porosity.

2. Treatments
 - Chromate
 - Phosphate

3. Hard Coats
 - Tagnite or Anomag - MgO
 - Mg Oxide (MgOAl$_2$O$_3$)

4. Finished (Final Finishes)
 - Power coating
 - Wet paint
 - Plating (Ni, Cu, Au, Ag, Chrome)